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Idea of historical simulations… 
 Why rely on statistics and hypothetical distribution? 

» Use the effective past distribution for all variables 

» Let’s compare actual and normal distributions of returns 
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Methodology 
 Method 

1. Compute returns and changes for all time-series of all risk sources 
Leave them in the same order! 

 

 

 

2. Compute the new values of the positions held in the portfolio 

a) Apply the returns to latest underlying prices to generate new price series 

 

 

b) Reprice all positions based on those new prices 

 

3. Aggregate them 

» Aggregation can be an issue... 

 

4. Rank portfolio values in descending order 

5. Choose the desired quantile leaving c% of the values above 
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Ins & Outs 
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Accuracy 
 Kendall & Stuart (1972): confidence interval for the quantile of a probability 

distribution estimated from sample data 

 

 

 

where 
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Extensions 
 Weighting of observations 

» Standard weights: 1/n 

» “EWMA” idea: Boudoukh et al. (1998) 

Weight given to change between day n  i and day n  i + 1 

 

 

 

 Same as standard weighting scheme when    1 

We sum up weights until we reach the desired quantile 

 The best value of  can be tested using backtesting 

 The effective sample size is reduced, unless we increase substantially n. 
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Extensions (2) 
 Incorporating volatility updating (Hull & White (1998)) 

» Use of: 

 

 

 where  
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Extensions (3) 
 Bootstrap 

1. We resample from the same dataset of changes to recreate many new 
similar datasets. 

2. The VaR is then calculated for each dataset. 

3. The confidence on the VaR is given by the range taken on the distribution 
of VaRs. 
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Monte Carlo simulations > principle 
 Why rely on a single scenario?  Simulate many 

» How?  Use statistics to generate those distributional samples! 

» What is the advantage?  We can reprice everything and... 
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The idea of random generation 
 Random returns generation…random? 

» The Wiener process 

 

 

 

 

» The generalized Wiener process 

 

» The Ito process 

 

 The Geometric Brownian motion 

» Returns distribution 

 

» Limit of the model 
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Δ𝑊𝑡~𝑁 0, Δ𝑡  
𝑧𝑡~𝑁 0,1  

Δ𝑊𝑡 = 𝑧 Δ𝑡 



Ito‘s calculus 
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The Choleski decomposition 
 Generating correlated randoms 
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Binomial methods (tree methods) 
 

13 Prof H. Pirotte 



Accuracy of simulations 
 The effect of sampling variability 

» the empirical distribution of ST is only an approximation, unless the 
number of simulations (k) is extremely large 

» Monte Carlo implied independent draws 

 The standard error of statistics is inversely related to   

 

 Methods to speed up convergence 
» Antithetic variable technique 

 

 

» Control variate technique 

 

 

» Quasi-random sequences (= QMC)  

 

k
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Comparison of models 

Delta-Normal 
(or var-covar) 

Historical Simulation MonteCarlo 
Simulation 

Valuation Linear (Local) Full Full 

Distribution 

 Shape 

 Extreme events 

 

 Normal 

 Low probability 

 

 Actual 

 In recent data 

 

 General 

 Possible 

Implementation 

 Ease of computation 

 Communicability 

 VaR precision 
 

 Major pitfalls 

 

 

 Yes 

 Easy 

 Excellent 
 

 Non-linearities, 
 fat tails 

 

 Intermediate 

 Easy 

 Poor with short  window 

 Time variation in  risk, 
unusual events 

 

 No 

 Difficult 

 Good with many 
iterations 

 Model risk 

Inspired from Jorion, Financial Risk Manager Handbook 
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